
1.

2.

1.

2.

1.

2.

Logged-in Users (server-side)

Use this scenario if you are making a server-side application that
requires the user to login to their VideoManager Pro account. This
scenario will allow you to redirect the user to the authorization
server's login page. The workflow is shown in the diagram to the right
and corresponds to the . OAuth 2.0 "authorization code" grant type Not
e that in this scenario, the application never has access to the user's
credentials.

There are several authentication APIs available that can be used
instead of writing the code for the requests below from scratch. The
framework used to develop the integration software may even already
provide this functionality. A list of authentication APIs can also be
found on the . OAuth website Make sure the one you choose supports
the "authorization code" grant type. Continue reading to learn how to
build these requests from scratch.

In order to acquire the access and refresh tokens, the application
must perform two requests to the authorization server:

Get an authorization code
(this covers steps 1 - 3 in the diagram)

Exchange the authorization code for access and refresh
tokens

(this covers steps 4 - 6 in the diagram)

Once the tokens are acquired, they are used in the following ways:

Use the access token - include it in the authorization header
for every request to the movingimage REST API

(this covers steps 7 & 8 in the diagram)
Use the refresh token - after the access token expires, use
the refresh token to get a new one

(this covers steps 9 - 11 in the diagram)

(this diagram assumes all requests are successful)

Get an Authorization Code

 The application must send the user to a login page using the authorization endpoint (see the Endpoint Discovery chapter).
Use the following data for your request:

client_id - you must get this from movingimage in advance (see yellow note at the top of the page)
redirect_uri - this is the location the login page will redirect the browser to after the user logs in - this must also be set
up with movingimage in advance
response_mode - set this to "query"
response_type - set this to "code"
scope - set this to "openid"
state - (optional) - generate a random URL encoded string for this value

Example:

https://login.movingimage.com/auth/realms/platform/protocol/openid-connect/auth?
 client_id=<---CLIENT_ID--->&
 redirect_uri=<---REDIRECT_URI--->&
 response_mode=query&
 response_type=code&
 scope=openid&
 state=<---RANDOM_STRING--->

 This scenario requires a unique client ID, client secret, and redirect URI to be set up with movingimage in advance. Contact movingima
ge Professional Services for further assistance.

Though the state value is optional, it is highly recommended to use it, as it protects against malicious
software attacks. Click here for more information.

Remember to URL encode your redirect URI (so "https://" should be "https%3A%2F%2F")

https://tools.ietf.org/html/rfc6749#section-1.3.1
https://oauth.net/code/
https://doc.movingimage.com/display/LT/Endpoint+Discovery
mailto:support@movingimage.com
mailto:support@movingimage.com
mailto:support@movingimage.com
https://auth0.com/docs/protocols/oauth2/oauth-state
https://www.w3schools.com/tags/ref_urlencode.asp

2.

3.

This link will send the user to a login page where they can enter their username and password to log in.

The user is then redirected to the location in the redirect_uri parameter. This location will contain an authorization code similar to the
example below:

https://redirect.example.com/#state=7f4jKO98p0&code=beEGJ7l7OmpTI6DuCmOsAWmcPMz4EwajvLE-0BU5NdA.
3a21d1a0-23ad-40c0-8d79-332ac758dee2

Exchange the Authorization Code for the Access and Refresh Tokens

 4. Extract the authorization code from the query.

 5. Use the token endpoint to build a POST request that will return your access and refresh tokens (if the code is valid).

Use the following data for your request:
grant_type - this must be "authorization_code"
client_id - same client id used in the last step
client_secret - you must get this from movingimage in advance (see yellow note at the top of the page)
code - the authorization code retrieved in the last step
redirect_uri - this must match the redirect uri used in the previous step

Example Request:

curl -X POST -H 'Content-Type: application/x-www-form-urlencoded' -d '
 grant_type=authorization_code&
 client_id=<---CLIENT_ID--->&
 client_secret=<---CLIENT_SECRET--->&
 code=<---AUTHORIZATION_CODE--->&
 redirect_uri=<---REDIRECT_URI--->'
https://login.movingimage.com/auth/realms/platform/protocol/openid-connect/token

 6. Example Response:

{
 "access_token": "<----ACCESS_TOKEN---->",
 "expires_in":300,
 "refresh_expires_in":3600,
 "refresh_token":"<----REFRESH_TOKEN---->",
 "token_type":"bearer",
 "id_token":"<----ID_TOKEN---->",
 "not-before-policy":0,
 "session_state":"b2e54e67-f61e-4193-88b8-5826a0b76179"
 "scope": "openid profile email"
}

With the access and refresh tokens, it is now possible to use them to authorize the user to access resources from the API.

Use the Access Token

Once you have a valid access token, you must include it in the header of each request to the movingimage REST API. The following uses the "Ge
t VideoManagers" method to demonstrate this:

curl -X GET -H "Authorization: Bearer <ACCESS_TOKEN>" https://api.video-cdn.net/v1/vms

Use the Refresh Token

The state will also be given back to you if you used this parameter in the login URL. If the state value matches the string from
the original login URL, it is safe to use the code.

Note the "expires_in" and "refresh_expires_in" values. These give the timeframe (in seconds) during which the access and
refresh tokens are valid, respectively. The access token's timeframe will be short, making the refresh token necessary (as
demonstrated below under the "Use the Refresh Token" heading).

http://docs.vmpfmpublicapiversion1.apiary.io/#reference/videomanagers/videomanagers-collection/get-videomanagers
http://docs.vmpfmpublicapiversion1.apiary.io/#reference/videomanagers/videomanagers-collection/get-videomanagers

. After the access token expires, you can use the The access token will expire after a short time, but it is possible to maintain uninterrupted access
refresh token to get a new one. You will also get a new refresh token and the time for the tokens will restart. Refreshing the tokens is expiration
possible until the latest refresh token expires. .If both tokens expire without refreshing, the session will end and you will need to authenticate again

Perform the following POST request (again using the discovered token endpoint) to refresh the tokens:

Use the following data for your request:
grant_type - this must be "refresh_token"
response_type - this must be "token"
client_id - same client id used in the previous steps
client_secret - same client secret used in the previous steps
refresh_token - the refresh token
redirect_uri - this must match the redirect URI used in the previous steps

Example Request:

curl -X POST -H 'Content-Type: application/x-www-form-urlencoded' -d '
 grant_type=refresh_token&
 response_type=token&
 client_id=<---CLIENT_ID--->&
 client_secret=<---CLIENT_SECRET--->&
 refresh_token=<---REFRESH_TOKEN--->&
 scope=openid'
https://login.movingimage.com/auth/realms/platform/protocol/openid-connect/token

The response data will be formatted just as it was the first time the token endpoint was used. It will contain new access and refresh tokens to use
until the next time the access token expires.

	Logged-in Users (server-side)

